المستخلص

Immune Enhancing Effect of Lactobacillus acidophilus and Lactobacillus gasseri in Mice Infected with Salmonella typhimurium

التأشير المناعي المحفز لبكتريا حامض اللاكتيك في الفئران المختبرية والمصابة تجريبياً ببكتريا السالمونيلا Shahlaa M. Salih Manhal F. A. Albarghash Saddam Y. D. Joubori College of Science/Al-Nahrain University. شهلاء مهدي صالح منهل فاروق احمد البرغش صدام يحيى ديوان جبوري كلية العلوم/جامعة النهرين Shehlaam2006@yahoo.com, Manhal.Farooq@Gmail.com, Saddam_diwan@yahoo.com

Abstract

This study was carried out to assess the protective immune effect of mixed culture of *Lactobacillus acidophilus* and *Lactobacillus gasseri* in mice infected with *Salmonella typhimurium*. Parameters of evaluation were total and absolute count of leukocyte and phagocytosis. Fifteen albino mice divided into five groups and designated as follows: CG used as negative control, SG was infected with 0.1 ml *Salmonella typhimurium* 2.5×10^7 cfu/ml and used as a positive control, AC was treated with 0.1ml *Lactobacillus acidophilus* 1×10^9 cfu/ml and infected with *Salmonella typhimurium* 2.5×10^7 cfu/ml, GG was doused with *Lactobacillus gasseri* and infected with *Salmonella typhimurium*, AG was fed with 0.1 ml mixed culture of *Lactobacillus acidophilus* and *Lactobacillus gasseri* and infected with *Salmonella typhimurium*, AG was fed with *Salmonella typhimurium* 2.5×10^7 cfu/ml. Results indicated that mice treated with viable *Lb.acidophilus* and *Lb.gasseri* showed a significant protective immune effect compared with positive and negative control, while mice fed with mixed culture of *Lb.acidophilus* and *Lb.gasseri* exhibited less protective effect against *Salmonella typhimurium* compared with groups fed with monoculture of *Lactobacillus*.

Key words: Immune effect, Lactobacillus, Salmonella typhimurium

الكلمات المفتاحية: التأثير المناعي، بكتريا حامض اللاكتيك، السـالمونيلا

Introduction

Probiotics are nonpathogenic organisms (yeast or bacteria, especially lactic acid bacteria) in foods that can exert a positive influence on the host's health [1].

Lactic acid bacteria (LAB) such as *Lactobacillus* are important micro-organisms in a healthy human microbiotic environment and produces a number of antimicrobial substances, including organic acids, hydrogen peroxide, bacteriocins, and bacteriocin-like substances [2]. Bacteriocins or bacteriocin-like substances are peptides or proteins, which exhibit inhibitory activity against sensitive strains of bacteria [3].

Research using single probiotic strains has been reported earlier but at present probiotic combinations with possibly additional health benefits are being assessed prior to use in clinical studies. At present, only a few scientific reports on the effects of probiotic combinations are available [4].

Salmonella spp. is one of the principal causes of human food-borne infections and resulted in a variety of disease syndromes such as enteric fever, bacteriemia, focal infections and enterocolitis[5,6]. Salmonella species can adhere to and invade eukaryotic cells by using different types of fimbriae and numerous proteins [7]. The ability to invade mammalian cells is critical to initiate the infection [8]. An essential step in the pathogenesis of typhoid fevers in mice or humans is the establishment of a systemic infection after oral challenge. This systemic infection usually develops from foci established in the Peyer's patches of the small intestine soon after ingestion. Thus the virulence of typhoid bacteria depends on their ability to penetrate into the Peyer's patches, to survive and multiply therein, and subsequently to become disseminated and survive systemically [9].

Multidrug-resistant (MDR) strains of *Salmonella* are now encountered frequently and the rates of multidrug-resistance have increased considerably in recent years [10]. Even worse, some variants of *Salmonella* have developed multidrug-resistance as an integral part of the genetic material of the organism, and are therefore likely to retain their drug-resistant genes even when antimicrobial drugs are no longer used.

Probiotic LAB has recently been suggested to become a useful tool that could be used as a preventive substance instead of antibiotics. However, heavy use of antibiotic has become a major problem, since it results in drug-resistant bacteria, thus, alternative and non-pharmaceutical strategies for controlling enteropathogenic bacterial infection have been sought by oral challenge with such enter pathogens as *Salmonella typhimurium*, *Escherichia coli*, *Shigellasonnei* and *Listeria monocytogenes* [11]. This study was carried out to investigate the immunopretotective effect of mono and mixed culture of *Lactobacillus acidophilus* and *Lactobacillus gasseri*.

Material and methods:

Bacterial isolates:

Lactobacillus acidophilus, Lb. gasseri and Salmonella typhimuruim were supplied by Immunology Lab. in the Department of Biotechnology, College of Science, Al-Nahrain University. Lactobacillus acidophilus previously isolated from vaginal swab, Lb. gasseriwas previously isolated from red peach fruit and Salmonella typhimuruim previously isolated from patient's stool infected with Salmonellosis.

Mixed Lactobacillusculture

The *Lactobacillus* was grown in de Mann, Rogosa and Sharp (MRS) broth (Merck) media for 18 hr at a 37° c. This activated culture was centrifuged at 2000 gat 4°C and resuspended in phosphate-buffered saline with pH 7, in order to obtain 10⁹ colony forming units (cfu)/ml which were obtained by using McFarland's method. The culture of *Lb.acidophilus* and *Lb. gasseri* was adjusted to a cell density 10⁹ colony forming units (cfu)/ml. Two cultures were mixed at a ratio 1:1. 100µl of this suspension was administered to mice by gavage needle, before the challenge with the pathogenic bacteria [12].

Bacterial infection

Mice were challenged by the oral-gastric route with 0.1 ml of the bacterial suspension containing about 2.5×10^7 cfu which was obtained by using McFarland's method [7].

Experimental Design

Fifteen albino male mice were randomly divided into five groups designated as CG, SG, AG, GG and AG. Each group consists of 3 mice, and subjected to the following treatments: GroupCG: This group was used as a negative control.GroupSG:This group was doused with 0.1ml of 2.5×10^7 cfu/ml *Salmonella typhimurium* culture and use as positive control. GroupAG: This group was fed with 0.1ml of 10^9 cfu/ml *Lactobacillus acidophilus* culture, and infected with 0.1ml of 2.5×10^7 cfu/ml culture of *Salmonella typhimurium*. GroupGG: This group was fed with 0.1ml of 10^9 cfu/ml *Lactobacillus gasseri* culture, and doused with 0.1ml of 2.5×10^7 cfu/ml culture of *Salmonella typhimurium*. GroupGG: This group was fed with 0.1ml of 10^9 cfu/ml *Lactobacillus gasseri* culture, and doused with 0.1ml of 2.5×10^7 cfu/ml culture of *Salmonella typhimurium*. GroupAG: This group was fed with 0.1ml of 2.5×10^7 cfu/ml culture, and doused with 0.1ml of 2.5×10^7 cfu/ml culture.

with 0.1ml of 10^{9} cfu/ml of mixed *Lactobacillus acidophilus* and *Lactobacillus gasseri* cultures, and doused with 0.1ml of 2.5×10^{7} cfu/ml culture of *Salmonella typhimurium*.

Mice were fed with a single dose 0.1 ml of 10 9 cfu/ml *Lactobacillus* culture daily by oral administration for 7 consecutive days. After 7 days treatment, at the 8thday of experiment period, each mouse was challenged with 0.1 ml *S. typhimurium* (2.5×10⁷) by oral administration. After 6th day infection with *Salmonella*, mice were sacrificed by cervical dislocation and the blood samples of each mouse were collected to evaluate immunological parameters [3].

Total Leukocyte Count

Blood samples were collected by heart puncture using a disposable insulin syringe 1 ml precoated with heparin. The method of [14] was followed, in which, an aliquot of 0.02 ml blood was mixed with 0.38 ml of leucocyte diluents in a test tube, and left at room temperature for 5 minutes. A drop of the mixture was applied to the surface of Neubauer chamber under the cover slip, and the chamber was left for 3 minutes to settle the cells. The leucocytes were counted in 4 large squares (each with 16 small squares), and the total count of leucocytes was obtained using the following equation:

Total Count (cell/cu.mm.blood) = $\left(\frac{\text{Number of Cells Counted}}{4}\right) \ge 20 \ge 10$

Absolute Count of Leukocytes

One drop of blood was smeared on a clean slide using another slide and left to dry at room temperature. The smear was stained with Leishman stain for 5 minutes and buffered for 10 minutes, and then washed with tap water. The slide was air-dried, and then examined under oil immersion lens (100X) [14]. At least 100 leucocytes were examined, and the percentage of each type was recorded, while the total count of each type was obtained using the following equation:

Total Count (cell/cu.mm.blood) =
$$\left(\frac{\text{Percentage of Cells x Total Count}}{100}\right)$$

Phagoctic Index

Mice were anaesthetized with chloroform, and then injected intraperitoneially with 3 ml of normal warm saline 37° C, then the abdominal region was massaged for 3 minutes. After that mice dissected, and the peritoneal cells were collected with a pasture pipette and transferred to a clean test tube. The tube was centrifuged 2000 rpm/minutes for 5 minutes and cells were suspended in 1 ml of normal saline, counted and their number was adjusted to 10^{6} cell /ml. Also, the cell viability was assessed using try pan blue stain. To carry out phagocytosis, 0.2 ml of cell suspension, 0.1 ml of heat-killed yeast suspension and 0.1 ml of human plasma AB were mixed in a test tube and incubated in a shaking water bath 37° C. After 30 minute incubations, smears were made and the slides were air-dried, and stained with Giemsa stain for 15 minutes. The slides were examined under oil immersion lens (100X), and at least 100 yeast-phagocytic and non-phagocytic cells were randomly counted. The phagocytic activity was expressed as a phagocytic index, which was calculated using the following equation [15]:

Phagocytic Index (%) =
$$\left(\frac{\text{Number of Phagocytic Cells}}{\text{Total Count}}\right) \times 100$$

Statistical analysis

The values of the investigated parameters were given in terms of mean \pm standard error, and differences between means were assessed by analysis of variance ANOVA and Duncan test, using the computer programme SPSS version 7.5. [16]

Results

 Table (1): Total and absolute count of leukocyte (mean ± standard error) in mice fed with Lacto bacilli and infected with S.typhimurium and control groups

Groups	CG negative control	SG positive control	AC (Lb.acidophillus	GC Lb.gasseri	AG Mixed Lactobacilli
Total leukocyte	7918 ± 366	3183 ± 320	9355 ± 669	10217 ± 377	5488 ± 478
count	a	a	a	a	b
Lymphocyte	4960 ± 385	2210 ± 52	5304 ± 194	5600 ± 288	3844 ± 98
count	a	a	a	a	b
Neutrophile	1966 ± 83	698 ± 85	2922±89	3420 ± 97	1010 ± 67
count	a	a	a	a	b
Monocyte count	849 ± 124	225 ± 24	889 ± 49	933 ± 79	566 ± 97
	a	a	a	a	b
Eosinophile	67 ± 42	30 ± 23	159 ± 43	178 ± 33	41 ± 31
count	a	a	a	a	b
Basophile count	76 ± 33	20 ± 12	81 ± 29	86 ± 32	27 ± 15
	a	a	a	a	b

a: Significant difference (p≤0.05) as compared with Control.

b: Significant difference (p≤0.05) as compared with SG.

Mice exerted a significant variation in phagocytic index between control groups and different groups of mice treated with *Lb.acidophillus*, *Lb.gasseri* and a mixed culture of *Lb.acidophillus* and *Lb.gasseri* Table (2)

 Table (2): Phagocytic index of peritoneal cells (mean ± standard error) in mice fed with Lactobacilli and infected with S.typhimurium and control groups

Groups	Mean ± Standard Error	Statistical evaluation
(negative control)CG	47.51 ± 1.26	a
(positive control)SG	49.6 ± 1.3	а
(Lb.acidophillus)AC	55.50 ± 3.50	а
(Lb.gasseri)GC	44.00 ± 3.0	b
(Mixed Lactobacilli)AG	53.50 ± 1.50	а

a: Significant difference (p≤0.05) as compared with Control.

b: No Significant difference (p≥0.05) as compared with Control

Discussion

Results showed that mice fed with monoculture of *Lactobacillus acidophilus* and *Lactobacillus gasseri* exhibited a statistically increase in total and absolute count of leukocyte and phagocytic index compared with positive and negative control. These results come in agreement with previous results obtained by [17]who stated that human *Lb. acidophilus* strain LB produces an antibacterial activity effective *in vitro* against Gram-negative and Gram-positive pathogens, *in vitro* against an enter invasive pathogen which adheres to and enters cultured human enterocytic cells, and *in vivo* in the *S. typhimurium*-infected-mouse model believe that the component(s) secreted by *Lb. acidophilus* LB that supports the antimicrobial activity could contain an unusual acidic amino acid present in a novel peptidic agent.

Many investigators reported that protective effect of Lactobacillus species against Salmonella typhimurium infection in mice might be due to their ability to adhere to intestinal mucus and this property was proved to be correlated with successful and long time *in vivo* colonization of gastrointestinal tract [18]. Potentially genes of Lb.acidophilus involved in adhesion, the complete genome sequence of Lb.acidophilus was analyzed and results showed that three genes were involved in Lb. acidophilusadhesion to intestinal cells which were, fibronectin-binding protein (FpbA), a mucin-binding protein(Mub), and a surface layer protein (SlpA). It was proven that the genes encoding FbpA, Mub, and SlpA contribute to the ability of Lb.acidophilus to adhere to intestinal cells in vitro [19]. A significant decrease in adhesion was observed in the fibronectin-binding protein mutant 76% and the mucin-binding protein mutant 65%. A surface layer protein mutant also showed reduction in adhesion ability 84%, but the effect of this mutation is likely due to the loss of multiple surface proteins that may be embedded in the S-layer [20]. Lb. acidophilus is more effective at inducing T-helper-1cytokines while L. salivarius induces a more anti-inflammatory response[21]. Another study revealed that mice fed with Lb. acidophilus or Lb. paracasei also enhanced the secretion of anti-inflammatory cytokine (IL-10) and pro-inflammatory cytokine (IFN- γ). The results of this study suggest that Lb. acidophilus and Lb. paracasei were able to enhance specific gut and systemic immune responses in mice [22]. The same result was obtained by [23] who found that several strains of Lb.gasseri showed a wide inhibitory activity against the tested bacteria. Gassericin A produced by Lb. gasseri LA39 was one of the most widely active bacteriocins. It was bactericidal without causing cell lysis. Mice fed with LAB exhibited a significant increased in IFN-y level and enhanced phagocyte function, and this caused a significant increase 66–100% in the phagocytic activity of (monocytes and polymorph nuclear cells) of mice fed with LAB compared with the control [24]. Results in this study demonstrated that mice fed with mixed culture of Lb. acidophilus and Lb. gasseri caused a statistically decrease in total and absolute count of leukocyte compared with negative control but this result was significantly higher when compared with positive control. A different observation was found by [25] who reported that feeding milk fermented with a mixture of Lactobacillus casei and Lactobacillus acidophilus exhibited a protective effect against Salmonella typhimurium infection in mice. The mixed culture of probiotic strains could increase the protective and treatment effects against Salmonella typhimurium infection and that they are more effective than using the individual probiotic strain [26]. This result may be due to the probiotic combination and the pathogen tested, indicating a very high specificity and requiring identification of the pathogens or related microbiota aberrancies involved in the probiotic target population. This result agreed with who reported that the ability to inhibit the adhesion of pathogens appears to be dependent in both, the probiotic combination and the pathogen tested and the displacement of pre-adhered pathogens was also found to be probiotic combination and pathogen dependent [27] a significant increase in total and absolute count and phagocytic index was ain mice treated with monoculture and mixedculture of Lactobacillus acidophilus and Lactobacillus gasseri.

References

- Marteau, P.R., de Vrese, M., Cellier, CJ. And Schrezenmeir, J. (2001). Protection from gastrointestinal diseases with the use of probiotics, Am J Clin Nutr. 73(suppl 2):430S–436S
- **2.** Macfarlane, G.T. and Cummings, J.H. (2002). Probiotics, infection and immunity, CurrOpin Infect Dis 15, 501–506.
- 3. Antoine, J.M. (2010). Probiotic: beneficial factor of the defense system, P. Nut. Soci. 69(3):429-33
- 4. Olivares, M., Diaz-Ropero, M.P and Xaus, J. (2006). The consumption of two new probiotic strains, *Lactobacillus gasseri*CECT 5714 and *Lactobacillus coryniformis* CECT 5711 boosts the immune system of healthy humans. Int. Microbiol. 9(1):47-52.
- 5. Patrick, M.E., Adcock, P.M., Tauxe, R.V. and Swerdlow, D.L. (2004). *Salmonella* enteritidis infections, United States, 1985–1999. Emerging Infectious Diseases. 10, 1–7.
- 6. Velge, P., Cloeckaert, A. and Barrow, P. (2005). Emergence of *Salmonella* epidemics: the problems related to *Salmonella enterica* serotype Enteritidis and multiple antibiotic resistances in other major serotypes. Veterinary Research. 36, 267–288.

- 7. Darwin, K.H and Miller, V.L. (1999). Molecular basis of the interaction of *Salmonella* with the intestinal mucosa. Clinical Microbiology Reviews. 12, 405–428
- 8. Carlson, S.A. and Jones, B.D. (1998). Inhibition of *Salmonella typhimurium* invasion by host cell expression of secreted bacterial invasion proteins. Infec. And Immun. 66, 5295–5300.
- 9. Hohmann, A., Schmdt, G. and Rowley, D. (1978). Intestinal colonization and virulence of *Salmonella* in mice.Infec.And Immun. 22(3) 763-770.
- 10. WHO. (2005). Subject Drug-resistant Salmonella / http://www. WHO int/media centre/factsheets/ fs139.
- **11.** Ishida-Fujii, K., Sato, R., Goto, S., Yang, X., Kuboki, H., Hirano, S.and Sato, M. (2007). Prevention of Pathogenic *Escherichia coli* Infectionin Mice and Stimulation of Macrophage Activation in Rats by an OralAdministration of Probiotic *Lactobacillus casei*I-5. Biosci. Biotechnol.Biochem. 71(4): 866-873.
- 12. Lilian, M. Elizabeth, N., Leda, Q. and Jacques, R. (2001). Protection by *lactobacillus acidophilus* UFV-H2B20 against experimental oral infection with *Salmonella enteric subsp.* Enterica Ser. *Typhimurium* gnotobiotic and conventional mice. Braz. J. Microbiol. 32(1).
- 13. Lin, WH., Yu, B., Lin, CK., Hwang, WZ. and Tsen, HY. (2007). Immune effect of heat-killed multistrain of *Lactobacillus acidophilus* against *Salmonella typhimurium* invasion to mice. Appl Microbiol. 102(1):22-31.
- 14. Haen, P. J. (1995). Principles of Hematology. Edited by L. H.Young and W. B. Publisher, London. pp: 310-325.
- **15.** Metcalf, J. A., Gallin, M. D., Nauseef, M. D. and Root, R. K. (1986). Laboratory Manual of Neutrophil Function. Raven Press New York, U.S.A
- **16.** McCullough, B.D. and Wilson, B. (2005) ."On the accuracy of statistical procedures in Microsoft Excel 2003."Computational Statistics and Data Analysis. 49: 1244-1252.
- 17. Marie, H., Vanessa, L. and Alain, L. S. (1997). Antibacterial Effect of the Adhering Human *Lactobacillus acidophilus* Strain LB, Antimicrobial agents and chemotherapy. 41 (5) 1046–1052.
- **18.** Annock, G. and Munor, K. and Welling, G. (2004). Impact of consumption of oligosaccharide containing biscuits on the fecal microbiota of humans. Appl. Environ. Microbio. 70(4): 2129-2136.
- 19. Logan, Eric, Tina and Todd, R. (2005). Appl. and Environ. Microb;71. p. 8344-8351, No. 12.
- **20.** Ventura, M., Jankovic, I. and Zink, R. (2002). Identification and characterization of novel surface proteins in *Lactobacillus johnsonii* and *Lactobacillus gasseri*. Appl. Environm. Microbiol. 68, 6172–6181.
- **21.** Brisbin, J.T., Gong, J and Sharif, Sh. (2010). Effects of Lactobacilli on Cytokine Expression by Chicken Spleen and Cecal Tonsil Cells. Clini. and Vac. Immun. 17, 9 1337-1343.
- 22. Paturi, G., Phillips, M., Jone, M. and Kasipathy. (2007). Immune enhancing effects of *Lactobacillus acidophilus* LAFTI L10 and *Lactobacillus paracasei* LAFTI L26 in mice. International J. of Food Micro., 115(1)115-118.
- 23. Itoh ,Y. Fujimoto, Y. Kawai, and SaitoT. (2008). Inhibition of food-borne pathogenic bacteria by bacteriocins from *Lactobacillus gasseri*.
- 24. Gill, K.J., Rutherfurd, J., Prasad and P. K. (2000). Enhancement of natural and acquired immunity by *Lactobacillus rhamnosus* (HN001), *Lactobacillus acidophilus* (HN017) and *Bifido bacterium lactis* (HN019). British J. of Nut. 83, 167–176.
- **25.** Perdigon, G., Alvarez, S. and Pesce de Ruiz Holgado, A.A. (1990). Prevention of gastrointestinal infection using immunobiological methods with milk fermented with *Lactobacillus casei* and *Lactobacillus acidophilus*. J. Dairy Res. 57, 255–264.
- **26.** El-Jakee, 1J., Moussa, I. MMohamed, 1Kh. F. and Mohamed, M.L (2010). Influence of Probiotics Mixture on *Salmonella typhimurium*in Mice.Int. J. of Microb. Res. 1 (2): 50-61.
- 27. Collado, M., Jalonen, L. and Salminen, S. (2006). Protection mechanism of probiotic combination against human pathogens: *in vitro* adhesion to human intestinal mucus, Asia Pac J.ClinNutr. 15(4): 570-575.