The activity of extracts *chara vulgaris* against promastigotes of *leishmania tropica*.

Abstract:

Leishmaniasis is a widespread parasitic disease caused by *Leishmania* parasite, this disease considers as a major health problem worldwide. The available therapy is unsatisfactory expensive with a cytotoxic side effects. Studies of marine algae as a source of pharmacological active compounds have increased worldwide. This study was aimed to investigate the effect of a type of green algae (*Chara vulgaris*) on promastigotes of *L. tropica*, by using various concentrations (500, 250, 125, 62.5, 31.25, 15.6 µg/mL) in vitro by MTT assay [3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyl tetrazolium bromide], to investigate its effect on the proliferation of promastigotes, by three incubation periods (24, 48, 72 hr.) The results showed a significant (*p< 0.05*) decrease in survived of promastigotes in treatment groups with concentrations that ranged between 15 to 500 µg/ml. This study revealed a major growth inhibition effect of the organic extract of *C. vulgaris* against *L. tropica* promastigotes, and the extract of ethyl acetate showed potential activity is better than the aqueous extract.

Keywords: Cutaneous leishmaniasis, *Chara vulgaris*, Promastigot.
Introduction

Leishmaniasis is a parasitic disease, clinically divided into three forms: cutaneous, mucocutaneous and visceral. Geographically, the disease is divided into: Old World leishmaniasis found in Africa, Asia, the Middle East, the Mediterranean, and India and New World leishmaniasis found in Central and South America [1]. The disease is vector-borne disease caused by protozoa of the genus Leishmania, are transmitted via sand flies of the genus Phlebotomus in the old world and Lutzomyia the new world [2]. There are over 14 species of Leishmania which may cause up to three different clinical syndrome [3, 4].

Leishmaniasis treatment includes four main options, pentavalent antimony, polyene amphotericin B, the alkylphosphocholine miltefosine and aminoglycoside paromomycin [5]. Despite advances, safety, resistance and cost issues necessitate the continued effort to identify an improved anti-leishmanial drug. Studies have also been undertaken to test the drug susceptibility of clinical isolates [6]. New drugs are being researched in order to find a more selective and effective therapy with fewer side effects [7,8]. The literature has reported several studies about biological activities of extracts from marine algae [9], are also have exhibited appreciable anticoagulant, anti-inflammatory, antitumoral, antiparasitic, antibacterial, and antiviral [10]. Moreover, the ability of marine algae to grow through mariculture and their short generation time make them sustainable sources of active ingredients, are considered an environment-friendly strategic approach that overcomes problems associated with the overexploitation of marine resources and the use of destructive collection methods [11].

Materials and Methods

1. Chemicals used.

MTT powder, fetal calf serum (FCS) and RPMI-1640 medium with L-glutamine were purchased from Capicorn Scientific. All other chemicals and solvents were of analytical grade.

2. Green algae Chara vulgaris isolates.

The algae C. vulgaris was collected from North of Iraq (AL- Sulaymaniyah Governorate) in April 2016 and diagnosed by Dr.Khaled Faq Al Balani, University of Garmian. The algae was brought to the laboratory in plastic bags containing water to prevent evaporation. Algae was then cleaned from epiphytes and rock debris and given a quick fresh water rinse to remove surface salts.

 a. Preparation of water extract.

 C. vulgaris powder 50g was added to 500 ml of distilled water (50 – 60 °C) in a glass flask and operated with a magnetic stirrer for 1 hour, then leave for 30 minutes, used a soft cloth to filter the solution and were separated by a centrifugal at 3000 rpm for 10 minutes. The solution was filtered again with type 1 paper Whatman, No.1; and the leachate was collected by rotary evaporator at a temperature of 45 °C and leaved to dry at room temperature, weighed dry matter and preserved in glass jars 20° C until used [12].

 b. Preparation of Ethyl acetate extract.

 According to [13] method preparation of the extracts were carried out [13].The dried plant materials (50g) were ground and extracted by Soxhlet extractor device in room temperature. Solvent was removed in a rotary evaporator and extracts were concentrated to dryness and stored at -20 °C, until testing.

3. Culture of Leishmania tropica.

Promastigotes were cultured in RPMI 1640 media (pH 7.2, 10% Fetal Calf Serum (FCS) with antibiotics (Penicillin/Streptomycin, Euroclone®) at 26˚C and sub-cultured at cell densities of 2×10⁷ to 2.5×10⁷ cells/ml. Promastigotes were seeded in 96-well culture plates at a density of 1×10⁵ cells/ml and treated in triplicate with extracts in final concentrations ranging from 500-15.2 µg/mL. The plates were incubated at 26˚C for 24,48 and 72 hr. before MTT assay.

4. Measurements of cell viability by MTT colorimetric assay.

MTT is a water soluble tetrazolium salt yielding a yellowish solution. Dissolved MTT is converted to an insoluble purple formazan by cleavage of the tetrazolium ring by dehydrogenase enzymes [14]. This water insoluble formazan can be solubilized using Dimethyl sulfoxide (DMSO), and the dissolved material is measured spectrophotometrically yielding absorbance as a function of concentration of converted dye [15]. Relative numbers of viable cells were determined based on the optical absorbance of the treated and untreated samples. L. tropica promastigotes was prepared in 96-well plates in a final volume of 100µl/well and incubated at 25˚C for three days. Ten µl of MTT solution was added per well and then the plate was incubated for 4 hr. at 25˚C. The media was removed and 100µl of DMSO solution was added in order to solubilize the formazan.
crystals. The plate was stirring gently then, left for 15 minutes. Absorbance was recorded at 490 nm by micro-plate reader and viability determined using the formula:

Percentage of viability = Plate-absorption reading of each test triplicate/Mean of plate reading of control triplicate X 100 [16].

5. Statistical Analysis.
To determine the significant differences between means of control and test values for each concentration after time (24, 48, and 72 hr), using t-test and different between means have analyzed at (p ≤ 0.05) and expressed as Mean ± SD [17].

Results and Discussion
In order to determine the cytotoxicity of C. vulgaris extracts in vitro and ex-vivo infection and its effect on the viability of Leishmania. The compound cytotoxicity has been screened against L. tropica Iraqi strain on culture of promastigotes. Colorimetric MTT assay had been used to examine the cell viability and it was determined by the ability of cells for transforming yellow tetrazolium crystal to insoluble blue formazan. Thus, the quantities of formazan produced were rate as a measure of cell viability. The results were plotted and compared with control group for all C. vulgaris extracts concentrations. Cytotoxicity was assessed by data of the microtiter-plate reader and calculated as mean ± standard deviation (SD).

Also, IC50 was estimated, the concentration that inhibited 50% of cell growth, which was calculated by SPSS software 2010[18].

Considering the inefficiency of current drugs and the fact that some varieties of Leishmania are resistant to these treatments, new drugs are being researched in order to find a more selective and effective therapies with fewer side effects. In vitro promastigotes of L. tropica were screened with C. vulgaris extracts following three times of follow up (24, 48, 72 hr.) Promastigotes were cultured in the RPMI-1640 medium at 26ºC [7, 8]. Therefore, our research conducted studies on new therapeutic agents.

1. Effect of different concentrations of C. vulgaris (Aqueous Extract) on L. tropica Promastigote, after (24, 48, 72) hours incubation.

Figure (1) revealed to L. tropica promastigotes viability after 24, 48 and 72 hr of exposure to aqueous extracts of C. vulgaris, showed significant differences (p< 0.05) between (24, 72 hr.) and non-significant (p> 0.05) among other times and between different concentrations of aqueous extract of C. vulgaris, except the lowest concentration (15.6 µg/mL), which have the highest values of mean ± SD of percentages of viable cells (83.29±2.83) after 24, 48 and 72 hours of follow-up showed significant (p< 0.05) differences with the highest concentrations (250, 500 µg/mL), which has high impact and the lowest values of mean ± SD (62.02±10.26, 59.73±9.47) respectively. While other concentrations of 31.2, 62.5 and 125 µg/mL was non-significant (p> 0.05), mean ± SD of percentage of viability were (74.67±5.77), (67.05±10.65) and (65.27±9.13) respectively, as shown in (table 1).

Table (1) : The percentage of viable cells of L. tropica promastigotes treated with aqueous extract of Chara vulgaris after 24, 48, 72 hours of incubation

<table>
<thead>
<tr>
<th>Extract concentrations</th>
<th>Percentages of promastigotes viability after exposed to water extract</th>
<th>mean ± SD</th>
<th>LSD P ≤ 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 hr.</td>
<td>48 hr.</td>
<td>72 hr.</td>
</tr>
<tr>
<td>15.6</td>
<td>80.02</td>
<td>85.09</td>
<td>84.77</td>
</tr>
<tr>
<td>31.2</td>
<td>68.10</td>
<td>76.99</td>
<td>78.93</td>
</tr>
<tr>
<td>62.5</td>
<td>56.62</td>
<td>66.63</td>
<td>77.92</td>
</tr>
<tr>
<td>125</td>
<td>55.62</td>
<td>66.41</td>
<td>73.79</td>
</tr>
<tr>
<td>250</td>
<td>53.64</td>
<td>58.96</td>
<td>73.48</td>
</tr>
<tr>
<td>500</td>
<td>49.77</td>
<td>60.79</td>
<td>68.64</td>
</tr>
<tr>
<td>mean ± SD</td>
<td>60.62±11.31</td>
<td>69.14±10.03</td>
<td>76.25±5.55</td>
</tr>
</tbody>
</table>

LSD P ≤ 0.05 | 19.271 |

LSD P ≤ 0.05 | 11.961
According to the results of MTT assay the IC50 was calculated to determine the most effective concentrations on the viability of L. tropica promastigotes. The IC50s of water extract after 24, 48 and 72 hr. were 318.94, 1006.27 and 1764.76 μg/ml respectively, there was a significant (p< 0.05) difference between them.

This is consistent with a previous study [19], where shown water extract of H. opuntia chlorophyta algae showed activity on promastigotes and intracellular amastigotes of L. amazonensis.

3.2. Effect the different concentrations of organic extract (ethyl acetate) from C. vulgaris on L. tropica Promastigote, after (24, 48, 72) hours incubation.

Ethyl acetate it extracts all medium-polar compounds such as terpenes, phenols, free radicals, salts, and some nitrogen oxides, the last solvent petroleum ether is non-polar, so it extraction non-polar compounds such as fats, terpenes and alkaloids free [22, 23]. As that elucidate the successful isolation of bioactive compounds depends primarily on two factors: extraction pattern and the type of solvent used [24].

Where it revealed to L. tropica promastigotes viability after 24, 48 and 72 hr of exposure to ethyl acetate extracts of C. vulgaris, showed non-significant (p> 0.05) differences between different times and different concentrations, also showed non-significant (p< 0.05) differences, except the lowest concentration (15.6 μg/mL), which have the highest values of viable cells 59.15±4.37 after 24, 48 and 72 hr. of follow-up showed significant (p<0.05) differences with the highest concentrations (250, 500 μg/mL), which have high impact and the lowest values (46.95±5.11; 41.29±6.44) respectively. While other concentrations 31.2, 62.5 and 125µg/mL was non-significant (p> 0.05) viability which were 57.61±3.57, 54.8±2.76 and 48.38±5.77 respectively, as shown in (table 2).
Table (2): The percentage of viable cells of *L. tropica* promastigotes treated with ethyl acetate extract of *Chara vulgaris* after 24, 48, 72 hours of incubation.

<table>
<thead>
<tr>
<th>Extract concentrate ions</th>
<th>Percentages of promastigotes viability after exposed to ethyl acetate extract</th>
<th>mean ± SD</th>
<th>LSD P ≤ 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.6</td>
<td>54.30 60.36 62.80</td>
<td>59.15±4.37</td>
<td></td>
</tr>
<tr>
<td>31.2</td>
<td>53.53 60.15 59.17</td>
<td>57.61±3.57</td>
<td></td>
</tr>
<tr>
<td>62.5</td>
<td>53.09 57.99 53.32</td>
<td>54.8±2.76</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>41.72 51.83 51.61</td>
<td>48.38±5.77</td>
<td>10.972</td>
</tr>
<tr>
<td>250</td>
<td>41.05 50.21 49.59</td>
<td>46.95±5.11</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>36.86 38.33 48.68</td>
<td>41.29±6.44</td>
<td></td>
</tr>
<tr>
<td>mean ± SD</td>
<td>46.75±7.73 53.14±8.41 54.19±54.19</td>
<td>9.458</td>
<td></td>
</tr>
</tbody>
</table>

and also indicate that the most effective compounds were semi-polar compounds, and since these solvents (organic) gave a good killing rate, than water extracted compounds, (figure 2).

Figure (2): Cell viability of *Leishmania tropica* promastigote treated with ethyl acetate extract of *Chara vulgaris*, after (24, 48, 72) hours incubation.
The IC50s of ethyl acetate extract after 24, 48 and 72 hr. were 49.41, 289.97 and 241.7912 μg/ml respectively, there was a significant (p < 0.05) difference between them.

The activity of *C. vulgaris* extracts is due to the presence of very important compounds, terpenes which have biological activity for viruses, bacteria, fungi and protozoa and phenols which is one of oxidizing compounds toxic to microorganisms as well as tannins, which works to stop bleeding and secretions and inhibit enzymes and proteins tanker in the cell membrane [25].

Conclusion.

In conclusion, results suggest that *Chara vulgaris* extracts proved a potential anti-Leishmania activity, in vitro, and it is recommended for further in vivo studies to examine the effect of *Chara vulgaris* on amastigotes.

References.

