Prevalence of vacA, cagA, and iceA Virulence Factors of Helicobacter Pylori Isolated from Gastro-duodenal Patients

Ahmed Husham Salman Aumed Arshad Hawezy*

Department of Anesthesia / Erbil Technical Medical Institute / Erbil Polytechnic University
* Department of Pharmacy / Erbil Technical Medical Institute / Erbil Polytechnic University

E-mail: ahmed.selman@epu.edu.iq

Abstract

Background: Helicobacter pylori are bacteria colonize in the human epithelial cells of the gastrointestinal tract. Its infection causes different diseases, including chronic gastritis, peptic ulcers, gastric lymphoma and adenocarcinoma. H. pylori have many virulence factors attributing in one or more biological functions.

Objective: Detecting the prevalence of virulence factor genes vacA, cagA, iceA among strain of H. pylori using molecular technique (PCR).

Materials and methods: Sixty patients (27 male and 33 female), aged 18 and above included in the present study who showed signs and symptoms of H. pylori, and undergo endoscopy between period of November 2019 and February 2020. RUT and PCR test done to detect the presence of H. pylori infection, also PCR used to detect the three virulence factors.

Results: Result showed that 44 patients, 21 (47.7%) male and 23 (52.3%) female were detected as positive H. pylori infections, among them 13 (29.5%) above 50 years, and 31 (70.4%) were below 50 years. While prevalence of the virulence factors vacA, cagA, and iceA were (100%), (84.1%), and (34.1%) respectively.

Conclusion: It can be concluded that the frequency and prevalence of these genes are differed and showed significant differences among them. Also, PCR test is sensitive and accurate for detection of H. pylori virulence genes.

Keywords: Helicobacter pylori, Virulence Factors, CagA, VacA, IceA, PCR.

Introduction

H. pylori is a usually spiral-shaped, gram-negative bacterium, its length is 2 to 4 μm and 0.5 to 1 μm in width with lophotrichous flagella (1,2). H. pylori’s prevalence shows large geographical variations worldwide (3,4). H. pylori infection causes peptic ulcer, chronic gastritis, mucosa-associated lymphoid tissue lymphoma, and gastric carcinoma (5,6). H. pylori have different virulence factors that perform different biological functions, some virulence factors have subtypes also (7,8). The virulence factors of H. pylori can be categorized to three major pathogenic processes, including colonization, immune escape, and disease induction (5,9).

Vacuolating cytotoxin a (VacA) is a cytoxin that secreted from H. Pylori as a large polypeptide, and before delivering to the host cells as an active form it must be modified by trimming its both ends to be able to exerts its activity (10,11). It performs biological functions like: phagocytosis suppression, inducing tolerogenic dendritic cell, and blocking of effector T-cell response. In addition, vacA has an important role for colonization of H. pylori in vivo. (5,9). All H. pylori strains have the gene that encode vacA, although the cytotoxic activity of the toxin varies among strains by displaying allelic diversity in three main regions of the gene which are the s (signal), the i (intermediate), and the m (middle) regions (12).

Cytotoxin-associated gene a (CagA) is one of the most important virulence factors of the H. pylori that have many biological functions including: phagocytosis suppression, decreasing antimicrobial peptide, inducing tolerogenic dendritic cell, and blocking of effector T-cell response (9). Beside those functions, cagA also related to other diseases and consequence, it could have a relation even with infertility in men (13). Not all strain of H. pylori have CagA virulence factor, strains can be divided into two types, those who have this virulence factor considered as CagA positive, while those who lack it are CagA negative strains. The
geographical distribution differs for these strains, in Western countries, approximately 60% of \textit{H. pylori} strains carry CagA, while in East Asian, almost all of the isolates are CagA positive (14, 15).

Induced by Contact with Epithelium (\textit{iceA}) gene was identified when investigating genes “induced by contact of \textit{H. pylori} with epithelium” in 1998 (9). There is an association between the presence of \textit{iceA} and peptic ulcer disease (PUD), also, \textit{iceA} is related with other clinical outcomes in the host, like acute antral inflammation and enhancing the expression of mucosal interleukin (IL-8) (8, 16).

Different diagnostic methods used to detect \textit{H. pylori} infection. Among them, PCR test show a high accuracy in detecting \textit{H. pylori} and genes of virulence factors. PCR has superiority on other diagnostic methods as it is simple, rapid and it is very accurate in detecting different genes and their mutations (5, 17). In Iraq there is little attention about the genotyping of \textit{H. pylori} isolate therefore this study aimed to detect \textit{h. pylori} using PCR test, and to identify the prevalence of \textit{H. pylori vacA, cagA, and iceA} virulence factors among gastrointestinal patients from Erbil city.

Materials and Methods

Sample collection

The present study included 60 samples that collected at Rизгьяر Teaching Hospital defectively at Hawler Gastroenterology and Hepatology Center. Samples collected from period of November 2019 and February 2020. Patients included 27 male, 33 female aged 18 and above. All samples collected from patients who submitted to endoscopy procedure. Patients followed instruction before taking biopsy samples like elimination of food and drug taking a day before the procedure. Two samples of 0.5 cm of the biopsy collected in two different tubes. The first tube used for RUT, while the second tube that contain Dulbecco’s phosphate-buffered saline (DPBS) used for PCR test.

DNA extraction

Genomic DNA extracted directly from biopsy samples using the Presto™ Mini gDNA Bacteria Kit following the manufacturer’s instructions; 100 μL elution buffer was used for extracting. Extracted genomics was stored at –20 ©C before running PCR (18).

Estimation of Extracted DNA

Before PCR run, agarose gel electrophoresis used to estimate the extracted genomic matter of \textit{H. pylori}. In which 1% agarose gel used and run on 85V for 45min.

Polymerase chain reaction (PCR)

Primers

In the present study five sets of primers were used. The first primer 16s rRNA used to detect the genome of \textit{H. pylori}. The other four primers used to detect genes of virulence factors (vagA, cagA, and \textit{iceA}). All primers sequences and the size of product are listed in Table (1):

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence of the primers (5’ to 3’)</th>
<th>Size of the product by base pairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{CagA} Forward: TGCTAAATTAGACAATTTGAGCGA</td>
<td>290 bp.</td>
<td></td>
</tr>
<tr>
<td>\textit{CagA} Reverse: AATAATCAACAAACATCACGCCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{VacA} Forward: GCGGTATCAATCTGTCCAATCA</td>
<td>68 bp.</td>
<td></td>
</tr>
<tr>
<td>\textit{VacA} Reverse: TGATATTCCCGTATTTTCCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\textit{iceA} Forward: GACAAGCGGTTGGAGTTTGCA</td>
<td>851 bp.</td>
<td></td>
</tr>
<tr>
<td>\textit{iceA} Reverse: GAGATCATGGCCTACACCCCG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16s rRNA Forward: ACTCCCTACGGGGGAAGAT</td>
<td>141 bp.</td>
<td></td>
</tr>
<tr>
<td>16s rRNA Reverse: GGACCGTGTCAGTCCAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PCR run and condition

Selected genes were amplified using DNA amplification with some optimization, cycling was carried out (Gradient thermal cycler Alpha Cycler PCRmax series). The primers used for PCR were specific for the detection of H. pylori DNA and the four virulence factors (see Table 1). Mixture total of 25 μl used for each primer in 0.5 ml microcentrifuge tube containing: 12.5 μl master mix, 2.5 μl forward primer, 2.5 μl reverse primer, 3 μl of the extracted genome, the volume completed to 25 μl by adding 4.5 μl of free nuclease water (19).

PCR condition and cycling were same for amplification of all the primers, in which started with initial denaturation 95°C for 5 minute followed by 45 cycles of denaturation 95°C for 40 second, annealing 59°C for 45 second, extension 72°C for 40 second, and followed by final extension 72°C for 5 minute.

Gel electrophoresis

After running the PCR for each sample using each primer separately, gel electrophoresis done for each sample to observe the results of the amplification, put in the tank and filled with TAE buffer, then add 6 μl of the PCR product to each well (note: no need to add loading dye because the master mix already contain it in their component). After loading the samples, the tank cover placed and the electric pole wires (+ and – poles) of the electrophoresis gel apparatus connected to its specific places. Power supply of 45 volts was applied for 10 minutes until the DNA left the wells and moved toward the positive electrical side, then the voltage increased to 75 v/45min. Results of amplified DNA bands were visualized by UV-light illuminator at (240,366nm) wave length. Pictures of the gel documented using 16MPX camera photography.

Statistical analysis of the results

Chi-square and Fisher’s exact test used to analyze the results of the present study with (P<0.05) for significant differences.

Results

Gastric biopsies of sixty patients were analyzed, in which 44 samples showed positive results for h. pylori infection, 21 (47.7%) male and 23 (52.3%) female. Participant ages varied from 18 to 71 years, in which 13 of them were 50 years or older. Results of all participants regarding to gender and age are shown in Table 2.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Number (n)</th>
<th>Percentage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (n = 44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>21</td>
<td>47.7</td>
</tr>
<tr>
<td>female</td>
<td>23</td>
<td>52.3</td>
</tr>
<tr>
<td>Age (n = 44)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above 50 years</td>
<td>13</td>
<td>29.5</td>
</tr>
<tr>
<td>Below 50 years</td>
<td>31</td>
<td>70.5</td>
</tr>
</tbody>
</table>

Regarding results of PCR test using 16srRNA for detecting the presence of h. pylori genome among 60 biopsy samples showed 44 (73.3%) as positive, and 16 (26.7%) as negative, as shown in Figure 1.
Results of PCR test using specific primer to detect vacA gene among 44 positive h. pylori, showed 44 (100%) positive, as shown in Figure (2). PCR test for cagA gene showed 37 (84.1%) positive results, as shown in Figure (3). And finally, PCR test for iceA gene showed 15 (34.1%) positive results, as shown in Figure (4).

Figure (1): Agarose gel electrophoresis analysis 1% (stained with safe stain) of PCR products presenting partial specific primer (16srRNA) that showed the expected size 141 bp. Lane L: is 100 bp DNA Marker; Lane 2 is (−ve) negative control, Lanes 3-16: samples amplified from h. pylori genome run on 75V for 45min. samples number 1 to 10, 14, and 15 were positive for H.pylori infection, while samples number 12, 13 and 16 were negative.

Figure (2): Agarose gel electrophoresis analysis 1% (stained with safe stain) of PCR products using specific primer (vacA) that showed the expected size 68 bp. Lane L: is 100 bp DNA Marker; Lane 2 is (−ve) negative control, Lanes 3-16: samples amplified from H. pylori genome run on 75V for 45min. samples number 1 to 10, 14, and 15 were positive for vacA gene, while samples number 12, 13 and 16 were negative.

Figure (3): Agarose gel electrophoresis analysis 1% (stained with safe stain) of PCR products using specific primer (cagA) that showed the expected size 68 bp. Lane L: is 100 bp DNA Marker; Lane 2 is (−ve) negative control, Lanes 3-16: samples amplified from H. pylori genome run on 75V for 45min. samples number 1, 3, 4, 5, 6, 8, 9, 10, 11, 14 and 15 were positive for cagA gene, while samples number 2, 7, 12, 13 and 16 were negative.
Figure (4): Agarose gel electrophoresis analysis 1% (stained with safe stain) of PCR products using specific primer (iceA) that showed the expected size 851 bp. Lane L: is 100 bp DNA Marker; Lane 2 is (-ve) negative control, Lanes 3-16: samples amplified from H. pylori genome run on 75V for 45min. samples number 4, 6, 8, 10 and 14 were positive for iceA gene, while samples number 1, to 3, 5, 7, 9, 11, to 13, 15 and 16 were negative.

The overall result of PCR test for detecting genes of virulence factors vacA, cagA, iceA among 44 positive cases approved by PCR were 44 (100%), 37 (84.1%), and 15 (34.1%) respectively as shown in Figure (5).

![Figure (5): number of vacA, cagA, iceA genes out of 44 positive PCR cases](image)

Discussion

The present study included 60 patients in which 44 samples showed positive results for H. pylori infection. 21 (47.7%) of them were males and 23 (52.3%) females. Result of statistical analysis showed non-significant differences with (P<0.56) regarding gender of the patients.

Regarding vacA gene, among 44 positive h. pylori patients, all patients (100%) showed positive results for this virulence factor gene. Detecting this gene in all H. pylori strains is normal as all H. pylori strains have the gene encode vacA (12). According to a recent study carried out in 2019 in Saudi Arabia, that included samples of gastric biopsies, detected vacA in all included samples with (100%) frequency, this approves and agree with present study (20). Also, another research carried by Flores- Treviño and his colleagues detected vacA gene in all samples that were 16sRNA positives for H. pylori, which 100% agree with current study (21). Other researches detected vacA in lower frequencies, for example, Idowu et al. detected vacA with 90.6% (22), the explanation of such differences belong to investigating subtypes of vacA, unlike present study which used a primer for vacA gene in general.

The present study detected CagA gene in 37 (84.1%) out of 44 positive PCR cases. According to a research carried out in 2017, detected cagA in 77% of the samples which somehow agree whit the present study (23). In an approach to detect prevalence of cagA in Kurdistan region, (24) and his colleagues in 2013 detected cagA with (72%) frequency. Another research carried by (25) detected cagA with (72%) frequency, having such differences in frequency of cagA will be clear considering geographical distribution of these researches which has an impact on the types of H. pylori strains (26).

The last virulence factor gene IceA, detected in 15 (34.1%) among 44 positive cases. Results of (20) for detection of iceA gene with approximately same frequencies agree with results of present study.
Another research carried out in Egypt, detected iceA with (38.8%) frequency that agree with the present study (27). Detecting iceA gene in lower frequencies than vacA and cagA may be due to the source of clinical isolates, as vacA and cagA are more contributed to gastric disease than iceA, also iceA, is found to be independent of cagA and vacA (6).

Finally, the studied genes of virulence factors in the present study showed agreement and differences with other studies. Several factors play role in differences like: geographical distribution, sample size, time of sampling and source of the clinical samples. Generally, genotyping of H. pylori strains obtained from multiple human populations around the world has demonstrated that the genetic diversity of this bacterium reflects human migrations and subsequent geographic and ethnic separation between human groups (28).

Conclusion

It can be concluded that genes of virulent factors showed variability and different frequencies among H. pylori. Some virulence factors present in all strain of the bacterium while other not. The frequency of the virulence factors depend on its biological functions. Geographical distribution also plays an important role in the distribution of those virulence factors.

References

