Published:8/5/2023

Comparison of genetic characteristics among species of Suaeda spp. (Amaranthaceae) in the western Anbar plateau - Iraq

	Affiliation: ¹ Department of Biology/College of Education for Pure Science/University Of Anbar/Ramadi- Iraq ² Department of Biology/College of Education for Pure Science/University Of Tikrit, Tikrit- Iraq
Publisher's Note:	
JOBRC stays neutral	*Correspondence: eps.sameersarhan.khleel@uoanbar.edu.iq
with regard to	Abstract
jurisdictional claims	Background: Comparison of genetic characteristics among species of Suaeda spp.
in published maps and	Objective: identifying the genetic characteristics among species <i>Suaeda</i> (Amaranthaceae) in Anbar Governorate. (From August 2020 to September 2021 fresh
institutional	plant samples were collected in the flowering stage for the studied species).
affiliations.	Materials and methods: The genetic diversity of the Suaeda species was studied after
Copyright: © 2022	DNA extraction and using the Inter Simple Sequence Repeats Reaction method to recorded in the genetic aspects. DNA was extracted from young leaves of the studied
by the authors.	species. The concentration and purity of the DNA were determined, and the detection of
Submitted for possible	genetic relationships between the studied plant species as well as finding this genetic fingerprint by ISSR Reaction.
open access	Results: The results showed that the plant samples collected during study belong to
publication under the	species of the genus Suaeda, and these species were: S. aegyptiaca, S. altissima, S.
terms and conditions	<i>carnosissma, S. fruticosa, S. monoica, S. vera and S. vermiculata</i> symbolized by (S1, S2, S3, S4, S5, S6, S7) respectively for the purpose of brevity. The results showed that there
of the Creative	was the highest close between <i>S. aegyptiaca</i> and <i>S. vera</i> which amounted to 0.6319, and
Commons Attribution	the results showed that there was the least closeness between S. aegyptiaca and S.
(CC BY) license	<i>carnosissma</i> which amounted to 0.4231. Conclusion: Genetic traits are among the stable traits that can be adopted in separating
	the studied species. The genetic study, especially at the DNA level, is one of the most
ВУ	important modern taxonomic studies that rely on PCR technology for the accuracy of its
	results and the speed of obtaining results. There are at least seven species of the genus
Received: 6/9/2022	Suaeda in the western province of Anbar Governorate - Iraq.
Accepted: 15/11/2	Key words: genetic characteristics, Suaeda, Amaranthaceae, western Anbar plateau.

Harith K. Buniya¹ Sameer S. Alrawi¹ Naglaa M. M. AL-abide²

https://doi.org/10.24126/jobrc.2023.17.1.696

1. Introduction

The *Suaeda* genus of plants is also known as seaweeds as well as seablites (1). Most species are confined to saline or alkaline soil habitats, such as coastal salt flats and tidal wetlands. They contain a trait seen in different plant genera that thrive in saline habitats (halophiles). There are about 110 species of the genus *Suaeda* (2).

The genus *Suaeda* includes plants that use the carbon-fixing pathway (C3 or C4), and the C4 pathway evolved independently in the same genus, and there are now about 40 species of the genus *Suaeda* that use the C4 pathway. *Suaeda aralocaspica*, classified in its Borszczowia section, uses a specific type of C4 photosynthesis without the typical Kranz anatomy leaf anatomy (3)(4)(5).

Suaeda can synthesize natural substances of strong antioxidant activity. It is considered a renewable source of energy, food and edible oil for a large number of people who live in a harsh environment with high salinity and drought conditions. This is due to its relatively large amounts of fixed oils, minerals and vitamins, which make it a potential renewable source for foods. These plants are also of great benefit because they are used as alternative medicines. In addition, *Suaeda* is used to treat various diseases due to its high content of polyphenols and flavonoids (6)(7).

Despite the multiplicity of the importance of the sage family, it has not been studied well in the world from a taxonomic point of view, due to the limited available taxonomic characteristics and the succulent nature of several types of them, and the delay in flowering and fruiting time as well as the unattractiveness of many of its types (8).

The Inter Simple Sequence Repeats reaction is used to find the contrast between different organisms (9)(10). It did not receive the required attention in Iraq and the world. However, there are recent contributions to cover the lack of information on the classification of family members, especially in Africa and Asia (11).

Based on what has been mentioned and the scarcity of local studies on this genus and the absence of information about it and its relationship to different photosynthesis pathways on the one hand, and its relationship to the taxonomic and evolutionary aspect on the other hand, the current study aims to record as much information as possible about several species of the genus *Suaeda* spp. In Anbar Governorate, western Iraq.

Materials and Methods

2.1. Sample collection

Plants were collected from the western plateau of Anbar Governorate (Ramadi, Fallujah, Khalidiya, Habbaniyah, Al-Muhammadi, Hit, Al-Baghdadi, Haditha), where several tours were conducted in the region and the tours were between periods of time ranging between 15/8/2020 and 15/9/2021 and through it the study samples were collected, which represented seven species belonging to the genus *Suaeda*.

2.2. Sample preservation

The samples were preserved after collection for the purpose of preparing them for the study. Parts of the sample were pressed with a wooden piston to be dried and to study the morphological and taxonomic characteristics. Parts of the samples were also placed in plastic bags, they were kept at a temperature of 4 °C until conducting the genetic study.

2.3. Method of crushing plant leaves of the studied species

Weigh (1 g) of the leaves of the studied samples and cut them into several small pieces using sterile scissors and put them in the pre-cooled ceramic mortar after which liquid nitrogen is added. The temperature is -20° until the start of the DNA extraction process.

2.4. Isolation of Genomic DNA

DNA was isolated from the young leaves of the above study species using the Genomic DNA Kit Plant supplied by SCIENTIFIC (USA) IBI. Electrophoresis was carried out using a 1% agarose gel, where the samples were carried over with a voltage difference of 100 millivolts for an hour, and the DNA was investigated by exposing it to a UV transilluminator with a wavelength of 256 nanometers.

2.4.1. Determination of the extracted DNA concentration and purity

The DNA concentration was estimated by measuring the absorbance of the UV spectrum using a spectrophotometer and at a wavelength of (260) nm. A DNA sample was added to 1980 μ l of the solute solution and then placed in a Spectrophotometer at a wavelength of (260) nanometers, and after reading the screen of the device, the following equation was applied to calculate the concentration of DNA:

DNA concentration $\mu g/\mu L$ = absorbance reading per 1 ml of sample at wavelength (260) x inverse of dilution (100) x (50/1000)

As for the purity of each sample of the study, it was estimated by dividing the absorbance reading at the wavelength (260) nm by the reading of the absorbance at the wavelength (280) nm (12).

2.4.2. ISSR reactions

ISSR reactions were performed on 7 samples from the studied family, based on the (13).

• The Substances and solutions required for ISSR reactions:

1-PCR PreMix.

2- Random Primers: Table 1 supplied by IDT (Integrated DNA Technologies) (Korea).

3- DNA template.

NO	Primers	primer sequence $5^- \rightarrow 3^-$ Tm		Time Electrophoresis
1	SSK1	GAGAGAGAGAGACC	48°C	45 minutes
2	SSK2	GTGTGTGTGTGTCC	48°C	45 minutes
3	SSK3	CTCCTCCTCGC	48°C	45 minutes
4	SSK4	TCTCTCTCTCTCTCTCC	48°C	45 minutes
5	SSK5	AGCAGCAGCAGCAGCAGCG	48°C	45 minutes
6	SSK6	GAGAGAGAGAGAGAGAGAGAG	48°C	45 minutes
7	SSK7	GAGCAACAACAACAACAA	48°C	45 minutes
8	SSK8	AGAGAGAGAGAGAGAGCG	48°C	45 minutes
9	SSK9	CTCTCTCTCTCTCTCTT	48°C	45 minutes
10	SSK10	CACACACACACACAG	48°C	45 inutes

Table (1): ISSR primers sequences, the temperatures used and the time duration for electrophoresis

3.Results:

3.1. genomic DNA extraction

The agarose gel electrophoresis at a concentration of (1%) showed the emergence of a single bund representing the chromosomal DNA of the different species of *Suaeda* (Fig. 1).

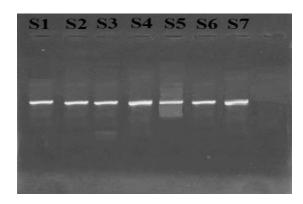


Figure (1) : Electrophoresis of DNA samples extracted from *Suaeda* plant species on agarose gel at a concentration of 1% and a voltage difference of 100 mA for 45 minutes

Table (2) shows the concentrations of DNA extracted from the studied species and extracted using (Kit) and it ranged between (160.55-148.25) ng. μ l⁻¹, purity ranged between (1.55-1.77), DNA samples used in the PCR reaction were diluted using (TE) in order to obtain a concentration of (25-50) ng. μ l⁻¹, symbols were given to represent the studied samples (S1) *S. aegyptiaca*, (S2) *S. altissima*, (S3) *S. carnosissma*, (S4) *S. fruticose*, (S5) *S. monoica*, (S6) *S. vera*, (S7) *S. vermiculata*.

Type sample	Abs 260	Abs 280	260/280	con(ng/n	ıl sample)		
S1	2.965	1.711	1.73290473	148.25	dsDNA		
S2	3.154	1.898	1.66174921	157.70	dsDNA		
S3	3.211	1.811	1.77305356	160.55	dsDNA		
S4	3.089	1.934	1.59720786	154.45	dsDNA		
S 5	3.043	1.855	1.64043127	152.15	dsDNA		
S6	3.017	1.887	1.59883413	150.85	dsDNA		
S7	2.987	1.933	1.54526643	149.35	dsDNA		

 Table (2): DNA concentration and purity of the studied plant species

3.2. Results of ISSR reactions

Table (3) and Figure (2) shows the results of the genetic study. In this study, 10 primers were used, as all the primers showed doubling. The results of doubling were appropriate to reveal the genetic relationships between the studied plant species as well as finding their genetic fingerprint. The results data were recorded on the basis of the presence or absence of DNA doubling sites, association sites, total bundles, and the percentage of total bundles, as well as the variation in the sizes and numbers of loci, the highest and lowest value. For link sites in every type and in every primer, the presence of unique sites and absent sites.

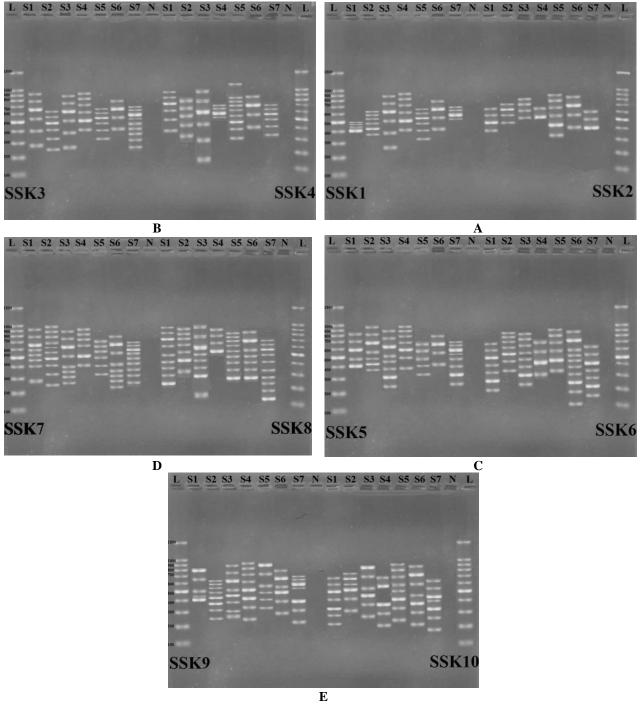


Figure (2): Electrophoresis of PCR reaction products of Primers SSK1, SSK2, SSK3, SSK4, SSK5, SSK6, SSK7, SSK8, SSK9 and SSK10 by ISSR indicators of *Suaeda* plant species on agarose gel at a concentration of 1% and at a voltage difference of 100 mA for 45 minutes

•Inferring the ISSR reactions for the prefixes used

Table (3) and Figure (2) shows the results of ISSR reactions. The highest primer in terms of the number of binding sites was (SSK7) with (55) bundles, and the lowest primer in terms of the number of binding sites was the primer (SSK2) with (27) bundles, the highest molecular size in binding sites were (1200bp) in the primer (SSK4) and the lowest molecular size was (100bp) in the primer (SSK6).

<u> </u>	,	I	results of 1551 t		the studied	1
location and size of	location and	number and	number and	lowest and	number	
				highest	and	Det
unique packets	size of absent			molecular size	proportion	Primers
(bp)	packets (bp)	dissimilar packets	identical packets	(bp)	of packets	
950bp (S4)				(~ P)	or puckets	
-						
900bp (S3)						
850bp (S4)						
750bp (S4)						
725bp (S7)	ĉ	36	<u>^</u>		36	00777
675bp (S7)	0	100%	0	275bp-950bp	8.144%	SSK1
450bp (S1)		100/0			011 11/0	
425bp (S2)						
325bp (S5)						
275bp (S3)						
900bp (S5)						
850bp (S6)		27			27	
350bp (S0)	0	100%	0	325bp-900bp	6.108 %	SSK2
- · ·		100/0			0.100/0	
325bp (S5)						
850bp (S4)						
750bp (S3)		43			43	
600bp (S7)	400bp (S3)		0	250bp-950bp		SSK3
275bp (S1)		100%		_	9.728%	
250bp (S2)						
1200bp (S2)						
_		40			40	
1000bp (S3)	0	40	0	150bp-1200bp	40	SSK4
900bp (S1)	-	100%		· · · · · · · · · · · · P	9.049%	
150bp (S3)						
750bp (S3)						
700bp (S1)	0	44	0	250bp-950bp	44	SSK5
325bp (S3)	2	100%		r	9.956 %	~~~~~
900bp (S5)	ĉ	49	<u>^</u>	1001 0007	49	0.077
150bp (S7)	0	100%	0	100bp-900bp	11.087%	SSK6
100bp (S6)		200/0				
1000bp (S2)						
850bp (S4)		48	7		55	
700bp (S4)	0	87.273%	12.727%	225bp-1000bp	12.445%	SSK7
225bp (S6)		07.27370			14.745/0	
_						
600bp (S3)						
200bp (S7)	0	54	0	150bp-950bp	54	SSK8
175bp (S3)	U	100%	U	12004-32004	12.217%	00110
150bp (S7)						
900bp (S4)				1		
575bp (S2)						
550bp (S5)	~	48	<u>^</u>	0051 0001	48	00770
350bp (S2)	0	100%	0	225bp-900bp	10.859%	SSK9
300bp (S3)						
275bp (S6)						
225bp (S7)						
900bp (S5)						
800bp (S5)						
- · ·	0	46	A	175hn 000h-	46	001710
625bp (S7)	0	100%	0	175bp-900bp	10.407%	SSK10
225bp (S5)					-	
175bp (S7)						
		435	7		442	Tetal
		98.416 %	1.584%		100%	Total
			8	I		

Table (3): Prefixes and some replication results of ISSR technology with the studied species

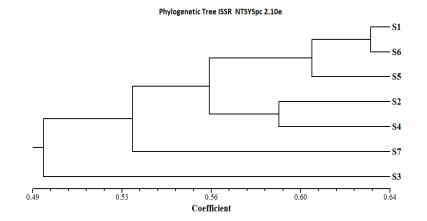
location and size of unique packets (bp)	location and size of absent packets (bp)	number and proportion of dissimilar packets	number and proportion of identical packets	lowest and highest molecular size (bp)	number and proportion of packets	Species
450bp (SSK1) 350bp (SSK2) 275bp (SSK3) 900bp (SSK4) 700bp(SSK5)	0	60 98.361%	1 1.639%	200bp- 950bp	61 13.801%	S. aegyptiaca (S1)
425bp (SSK1) 250bp (SSK3) 1000bp (SSK7) 575bp (SSK9) 350bp (SSK9)	0	65 98.485%	1 1.515%	250bp- 1000bp	66 14.932%	S. altissima (S2)
900bp (SSK1) 275bp (SSK1) 750bp (SSK3) 400bp (SSK3) 1000bp (SSK4) 150bp (SSK4) 750bp (SSK5) 325bp (SSK5) 175bp (SSK8) 300bp (SSK9)	400bp(SSK3)	67 98.529%	1 1.471%	150bр- 1000bр	68 15.385%	S. carnosissma (S3)
950bp (SSK1) 850bp (SSK1) 750bp (SSK1) 850bp (SSK3) 850bp (SSK7) 700bp (SSK7) 900bp (SSK9)	0	51 98.077%	1 1.923%	200bp- 950bp	52 11.765%	S. fruticose (S4)
325bp (SSK1) 900bp (SSK2) 325bp (SSK2) 1200bp (SSK4) 900bp (SSK6) 550bp (SSK9) 900bp (SSK10) 800bp (SSK10) 225bp (SSK10)	0	66 98.507%	1 1.493%	225bр- 1200bр	67 15.158%	S. monoica (S5)
850bp (SSK2) 100bp (SSK6) 225bp (SSK7) 275bp (SSK9)	0	57 98.276%	1 1.724%	100bp- 850bp	58 13.122%	S. vera (S6)
725bp (SSK1) 675bp (SSK1) 600bp (SSK3) 150bp (SSK6) 200bp (SSK8) 150bp (SSK8) 225bp (SSK8) 625bp (SSK10) 175bp (SSK10)	0	69 98.571%	1 1.429%	150bр- 725bр	70 15.837%	S. vermiculata (S7)
		435 98.416%	7 1.584%		442 100%	Total

Table (4): Some results of ISSR reactions, depending on the studied species

3.2.1. Results of ISSR reactions for the studied species

Table (4) and Figure (2) shows the use of the ISSR index to analyze genetic variation among eight types of cruciferous plants, determine the genetic dimension and find genetic fingerprints for some species. Primarily, as well as the lowest and highest molecular size, the number of unique and absent sites for each species.

• Inferring the ISSR reactions for the studied species


Table (4) and Figure (2) shows that the species (S7) had the highest number of binding sites (70) sites and a percentage (15.837%) and the lowest number of binding sites (52) sites and a percentage (11.765%) appeared in the type (S4), which had the highest molecular size It appeared in the type (S5) (1200bp) and the lowest molecular size (100bp) appeared in the type (S6), the highest number of binding sites for unique packages (10) sites appeared in the type (S3), and the lowest number of binding sites for unique packages (4) sites In the type (S6), and the type (S3) was distinguished by one link site for an absent band, while the results of the other studied types did not show any absent bands.

3.3. Estimation of genetic affinity based on the results of the ISSR .

The genetic affinity between the studied species was estimated using the genetic program (NTSYSpc 2.10e) based on the presence of bundles common to each of the studied species. The results were analyzed by the Nei equation (14).

ISSR	S1	S2	S 3	S4	S 5	S 6	S7
S1	1.0000						
S2	0.5110	1.0000					
S 3	0.4231	0.5385	1.0000				
S 4	0.5989	0.5934	0.5385	1.0000			
S 5	0.6154	0.5879	0.4560	0.5879	1.0000		
S6	<mark>0.6319</mark>	0.5385	0.5055	0.5604	0.5989	1.0000	
S7	0.5440	0.5385	0.5055	0.4945	0.5330	0.5495	1.0000

Table (5): values of genetic affinity between the studied species according to the results of ISSR

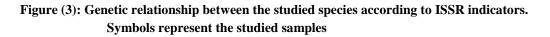


Table (5) and Figure (3) shows the genetic affinity between the studied species, which ranged between (0.4231 - 0.6319). When the genetic material (DNA) between the two species matches, it indicates that the value of the genetic distance between them should be zero, and the percentage of genetic similarity between the two species was (100%) (15).

4. Discussion:

Previous studies of molecular and morphological evolution on the genus Suaeda by (3) contributed to clarifying the taxonomic system of the sub-genus and the order of divisions in the genus Suaeda, while recent molecular genetic studies have found unclear relationships between *Suaeda* spp. At the species level (16)(17).

5. Conclusion:

Genetic traits are among the stable traits that can be adopted in separating the studied species. The genetic study, especially at the DNA level, is one of the most important modern taxonomic studies that rely on PCR technology for the accuracy of its results and the speed of obtaining results. There are at least seven species of the genus *Suaeda* in the western province of Anbar Governorate – Iraq.

References

- 1. USDA.. Suaeda. Natural Resources Conservation Service, PLANTS Database. Retrieved 4 December (2015).
- 2. FNA, Flora of North America, Entry for Suaeda. (2019); 4: 260, 360, 389, 390.
- **3.** Schütze P, Freitag H, Weising K. "An integrated molecular and morphological study of the subfamily Suaedoideae Ulbr. (Chenopodiaceae)". *Plant Systematics and Evolution*. (2003); 239(3-4): 257–286.
- **4.** Sage RF. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. *Journal of Experimental Botany*. (2016); 67(14): 4039-4056.
- Kapralov MV, Akhani H, Voznesenskaya EV, Edwards G, Franceschi V, Roalson EH. Phylogenetic Relationships in the Salicornioideae / Suaedoideae / Salsoloideae s.l. (Chenopodiaceae) clade and a clarification of the phylogenetic position of Bienertia and Alexandra using multiple DNA sequence datasets. *Systematic Botany*. (2006); 31(3): 571–585.
- **6.** Mohammed H A. The valuable impacts of halophytic genus Suaeda; nutritional, chemical, and biological values. Medicinal Chemistry, (2020); 16(8): 1044-1057.
- 7. Li Q, Song J. Analysis of widely targeted metabolites of the euhalophyte Suaeda salsa under saline conditions provides new insights into salt tolerance and nutritional value in halophytic species. *BMC Plant Biology*, (2019); 19(1): 1-11.
- **8.** Akhani H .Halophytic vegetation of Iran: towards a syn- taxonomical classification. *Ann Bot* (Rome). (2004); 4: 66-82.
- Hammadi SY, Hussein AS, Mageed DM, Dheeb BI, Ismail EN. RAPD and ISSR analyses of Saccharomyces cerevisiae isolates from different sources. Journal of Biotechnology Research Center. (2018); 12(2): 40-50.
- **10.** Mezher MA, Mohammad SH, Wahab KM, Salman ZA, Rashid SA, Tuama BA. Study genetic diversity between trichophyton rubrum isolates using ISSR and RAPD markers. Journal of Biotechnology Research Center. (2018); 12(2): 5-13.
- **11.** Takhtajan AL. Outline of the Classification of flowering plants (Magnoliophyta). Bot. Rev., (1980); 46: 225-359.

- 12. Maniatis T, Fritsch FF, Sambrook J. In vitro application of DNA by the polymerase chain Reaction in molecular cloning : A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press, New York, USA, (2001); p: 691.
- **13.** Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)anchored polymerase chain reaction amplification. Genomics, (1994); 20(2): 176-183.
- **14.** Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, (1979); 76(10): 5269-5273.
- **15.** Esselman EJ, Crawford DJ, Brauner S, Stuessy T F, Anderson GJ, Mariosilva O. RAPD marker diversity within and divergence among species of Dendroseris (Asteraceae: Lactuceae). American Journal of Botany, (2000); (4): 591-596.
- **16.** Brandt R, Lomonosova M, Weising K, Wagner N., Freitag H. Phylogeny and biogeography of Suaeda subg. Brezia (Chenopodiaceae/Amaranthaceae) in the Americas. Pl. Syst. Evol. (2015); 301: 2351–2375.
- **17.** Kim S., Chung SO. Phylogenetic study of the Genus Suaeda (Chenopodiaceae) based on chloroplast and nuclear DNA sequences from Korea. Korean J. Environ. Ecol. (2018); 32: 566–574.

مقارنة الخصائص الوراثية بين أنواع جنس .Suaeda spp (Amaranthaceae) في هضبة الأنبار الغربية - العراق

سمير سرحان الراوي ^{1*} حارث كامل بنية ¹ نجلاء مصطفى محمد العبيد²

قسم علوم الحياة / كلية التربية للعلوم الصرفة / جامعة الانبار
 قسم علوم الحياة / كلية التربية للعلوم الصرفة /جامعة تكريت
 Correspondence: eps.sameersarhan.khleel@uoanbar.edu.iq

الخلاصة:

خلفية عن الموضوع : مقارنة الخصائص الوراثية بين أنواع .Suaeda spp.

الهدف من البحث: التعرف على الخصائص الوراثية بين انواع جنس Suaeda (Amaranthaceae) في محافظة الانبار. (من أغسطس 2020 إلى سبتمبر 2021 تم جمع عينات نباتية طرية في مرحلة التزهير للأنواع المدروسة).

المواد وطرق العمل: تم دراسة التنوع الجيني لأنواع Suaeda بعد استخلاص الحمض النووي واستخدام طريقة التفاعل البسيط المتكرر لتكرار التفاعل لتسجيلها في الجوانب الجينية. تم استخراج الحمض النووي من الأوراق الصغيرة للأنواع المدروسة. تم تحديد تركيز ونقاوة الحمض النووي ، وكشف العلاقات الوراثية بين الأنواع النباتية المدروسة وكذلك اكتشاف البصمة الوراثية بواسطة تفاعل ISSR.

الاستنتاجات: الصفات الوراثية من الصفات المستقرة التي يمكن تبنيها في فصل الأنواع المدروسة. تعد الدراسة الجينية وخاصة على مستوى الحمض النووي من أهم الدراسات التصنيفية الحديثة التي تعتمد على تقنية PCR لدقة نتائجها وسرعة الحصول على النتائج ، وهناك ما لا يقل عن سبعة أنواع من جنس Suaeda في غرب محافظة الانبار - العراق.

الكلمات المفتاحية: الخصائص الوراثية، Amaranthaceae, Suaeda، هضبة الانبار الغربية.