Camellia sinensis (Green Tea) Mediated Synthesis of Zinc Oxide Nanoparticles and Detect its Antibacterial Activity against Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii

Authors

  • Israa Ali Zaidan Al-Ogaidi

DOI:

https://doi.org/10.24126/jobrc.2017.11.1.497

Keywords:

Nanoparticles, Zinc oxide, Pathogenic bacteria, DNA damage

Abstract

In the current study, synthesis and characterization of Zinc oxide nanoparticles (ZnONPs) and its application as anti-pathogenic bacteria were investigated.  ZnO which has been prepared by using aqueous of green tea leaves extract (Camellia sinensis) as a reducing agent. The wavelength range was measured by Ultraviolet–visible spectroscopy (UV-Vis) for monitoring the formation of the nanoparticles, which showed sharp peak at 360 nm. The average size and shape of the nanoparticles were detected by using Atomic Force Microscopy (AFM) which was 88 nm with spherical shape. Fourier transform–infrared (FTIR). FT-IR spectra was documented for the ZnO nanoparticles synthesized by green tea extract to detect the biomolecules involved in the synthesis process. The antibacterial activity of crystal Zinc Oxide (ZnO) nanoparticles was explored against pathogenic bacteria that included Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii. The antibacterial test was conducted in solid media using different concentrations of ZnO and disk diffusion method, 100 µg/ml presented the best antibacterial activity, and further studies on the damage of bacterial genomic DNA of Escherichia coli and Acinetobacter baumannii were carried out using gel electrophoresis exposed the DNA fragment bands, this activity may be caused by the interactions between the surface charge of cell and nanoparticles. Reactive oxygen species (ROS) properties of the particles might disturb cell wall and great antimicrobial action

Downloads

Published

2017-01-01

How to Cite

Al-Ogaidi, I. A. Z. . (2017). Camellia sinensis (Green Tea) Mediated Synthesis of Zinc Oxide Nanoparticles and Detect its Antibacterial Activity against Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii. Journal of Biotechnology Research Center (JOBRC), 11(1), 34–40. https://doi.org/10.24126/jobrc.2017.11.1.497

Issue

Section

Research articles