Camellia sinensis (Green Tea) Mediated Synthesis of Zinc Oxide Nanoparticles and Detect its Antibacterial Activity against Escherichia coli, Staphylococcus aureus and Acinetobacter baumannii
DOI:
https://doi.org/10.24126/jobrc.2017.11.1.497Keywords:
Nanoparticles, Zinc oxide, Pathogenic bacteria, DNA damageAbstract
In the current study, synthesis and characterization of Zinc oxide nanoparticles (ZnONPs) and its application as anti-pathogenic bacteria were investigated. ZnO which has been prepared by using aqueous of green tea leaves extract (Camellia sinensis) as a reducing agent. The wavelength range was measured by Ultraviolet–visible spectroscopy (UV-Vis) for monitoring the formation of the nanoparticles, which showed sharp peak at 360 nm. The average size and shape of the nanoparticles were detected by using Atomic Force Microscopy (AFM) which was 88 nm with spherical shape. Fourier transform–infrared (FTIR). FT-IR spectra was documented for the ZnO nanoparticles synthesized by green tea extract to detect the biomolecules involved in the synthesis process. The antibacterial activity of crystal Zinc Oxide (ZnO) nanoparticles was explored against pathogenic bacteria that included Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii. The antibacterial test was conducted in solid media using different concentrations of ZnO and disk diffusion method, 100 µg/ml presented the best antibacterial activity, and further studies on the damage of bacterial genomic DNA of Escherichia coli and Acinetobacter baumannii were carried out using gel electrophoresis exposed the DNA fragment bands, this activity may be caused by the interactions between the surface charge of cell and nanoparticles. Reactive oxygen species (ROS) properties of the particles might disturb cell wall and great antimicrobial action
Downloads
Published
How to Cite
Issue
Section
License
This is an Open Access article distributed under the terms of the creative commons Attribution (CC BY) 4.0 license which permits unrestricted use, distribution, and reproduction in any medium or format, and to alter, transform, or build upon the material, including for commercial use, providing the original author is credited.